

REGRESSION/CORRELATION

Goal: identify any non-random relationship between X and Y.

- ► Check assumptions.
- Estimate parameters. $Y = \alpha + \beta X, r, R^2$
- ► Test for significance. ANOVA, t-test
- ▶ Calculate CI.
- ▶ Interpret results.

{-0.143, 0.061}

10 20 30 40 50 60 70 80 90 100

ASSUMPTIONS

- Independence of data points.
- ► Treatment (i.e., independent) variables being fixed/variable
- Linearity of the pattern.
- Normal distribution of residuals around best fit line.
- ► Equal variance of Y values along the X range.

If assumptions are violated:

- Transform data values into ones that meet assumptions.
- ▶ Use a different method (e.g., nonlinear regression).

EXAMPLE 1: 1st and 2nd exam scores t-test analysis H_0 : $\beta = \beta_0 = 0$ df = n - 2 = 8 - 2 = 6 $b - \beta_0 = 0.345 - 0$ 2.612 3.143 Recall: 95% CI is approx. ±2 SE. Slope is 0.345. SE is 0.12 95% CI is approx. { 0.105, 0.585 } scores vs exam 2 scores is significantly larger than zero (0.02 < p < 0.04)"

t-test of r value

2.612 3.143

Regression

Causation confirmed

Causation claims severe

p < 0.05 for tests

Slope 95% CI excludes zero

Can predict each variable from the other

Real, but might be unimportant

p > 0.05 for tests

Slope 95% Cl includes zero

Can't predict either variable from the other

Not real or important

EXAMPLE 1: 1st and 2nd exam scores

between exam 1 scores and exam 2 scores is

significantly larger than zero (0.02 < p < 0.04)"

Correlation

 $H_0: \rho = \rho_0$ $H_A: \rho \neq \rho_0$

INTERPRETING

RESULTS

A significant

(i.e., non-random)

relationship exists

A nonsignificant

(i.e., random)

relationship exists

EXAMPLE 1: 1st and 2nd exam scores ANOVA analysis

1^{st}	2^{nd}	$x - \bar{x}$	$y - \bar{y}$	$(x-\bar{x})^2$	$(y-\bar{y})^2$	SP_{xy}	9 :	$\hat{y} - \bar{y}$	$(\hat{y} - \bar{y})^2$	$y_i - \hat{y}$	$(y_i - \hat{y})$
51	74	4	-2	16	4	-8	76.07	0.07	0.01	-2.07	4.30
67	72	20	-4	400	16	-80	76.37	0.37	0.14	-4.37	19.12
27	75	-20	-1	400	1	20	75.63	-0.37	0.14	-0.63	0.39
27	80	-20	4	400	16	-80	75.63	-0.37	0.14	4.37	19.12
5	74	-42	-2	1764	4	84	75.22	-0.78	0.61	-1.22	1.48
67	78	20	2	400	4	40	76.37	0.37	0.14	1.63	2.65
85	79	38	3	1444	9	114	76.71	0.71	0.50	2.29	5.25
329 47	532 76	0	0	4824	54	90		0	1.679	0	52.321
				SS_X	SS_Y	SPXY			SS_{reg}	5	Serror
					SStotal						

EXAMPLE 2: ID number and exam scores

EXAMPLE 2: ID number and exam scores

Y = -0.041 X + 66.628

 $F_{calc} = 0.660 (p \approx 0.42)$

 $t_{calc} = -0.809 \ (p \approx 0.42)$

"The slope of the best-fit line

for ID numbers vs exam 1

scores is not significantly

different from zero (0.4 < p)"

 $R^2 = 0.005$

EXAMPLE 1: 1st and 2nd exam scores Summary & graphs

EXAMPLE 2: ID number and exam scores Calculations

$$SS_X = \sum (X_i - \bar{X})^2 = 4824 \qquad SS_Y = \sum (Y_i - \bar{Y})^2 = 54 = SS_{total}$$

$$SP_{XY} = \sum (X_i - \bar{X}) (Y_i - \bar{Y}) = 90 \qquad b = \frac{SP_{XY}}{SS_X} = \frac{90}{4824} = 0.019$$

$$\bar{Y} = 75.123 + (0.019)\bar{X}$$

$$SS_{reg} = \sum (\bar{Y}_i - \bar{Y})^2 = 1.679 \qquad SS_{error} = \sum (Y_i - \bar{Y}_i)^2 = 52.321$$

$$r = \frac{SP_{XY}}{\sqrt{SS_XSS_Y}} = \frac{90}{\sqrt{(4824)(54)}} = 0.176$$

$$R^2 = \frac{SS_{reg}}{SS_Y} = \frac{1.679}{54} = 0.031 = 0.176^2 = r^2$$

INTERPRETING RESULTS

- Significant slopes in a <u>regression</u> analysis can imply causation, but the causation may be indirect.
- ▶ Significant slopes in a correlation analysis may imply causation but other factors may be driving the pattern.
- ► Correlation does not prove causation, but it's still useful.
- Best-fit line can be used to make predictions.
- Significant correlations are a first step to finding causation.
- Lack of a correlation is strong evidence against causation.
- ► A significant slope implies a non-random relationship, but is it relevant or trivial?
- ▶ The results only hold for the range of X values studied.

EXAMPLE 1: 1st and 2nd exam scores Calculations

EXAMPLE 2: ID number and exam scores Summary & graphs

EXAMPLE 2: ID number and exam scores t-test of r value

PROCEDURE FOR CALCULATIONS

- ► Calculate SS_x, SS_y, and SP_{xy}
- ▶ Use these to estimate slope and Y-intercept for best-fit line.
- ► Use best-fit line to calculate SS_{req} and SS_{error}
- ▶ Use these to perform ANOVA and t-tests of slope significance.
- ▶ (optional) Perform significance test for r.
- ▶ (optional) Calculate confidence/inclusion intervals for line/slope.

EXAMPLE 1: 1st and 2nd exam scores

EXAMPLE 2: ID number and exam scores ANOVA analysis

EXAMPLE 2: ID number and exam scores t-test analysis

Stats Examples.com