

Odds are, you'll find this useful

Probability fundamentals

We consider the probabilities of events within sample spaces of possible

Event: the outcomes we focus on. Sample space: the set of all possible outcomes.

p(A): the "probability of event A"

Probability fundamentals

We also consider probabilities of events other than the focal event.

i.e., the probability of the event not being A

Probability of not A represented by: $p(\neg A), p(\sim A), p(A'), p(\bar{A}), p(A^{C})$

e.g., drawing cards from a deck

(but remember these if you see them) Let's use this one

Drawing a Heart and a Club - mutually exclusive events. Drawing a Jack and a Two - mutually exclusive events.

Sample space = bowl of M&Ms, Event = picking an M&M e.g., 20 red, 20 yellow, 30 brown, 30 green.

Some probability rules

p(purple)=0/100=0

p(M&M)=100/100=1

not red

Tacks Hearts

p(impossible event) = 0 - Therefore $0 \le p(A) \le 1$ p(certain event) = 1

 $p(A) + p(\neg A) = 1$, this is the Complementation rule

ADDITION RULES

General addition rule:

If A and B are not mutually exclusive events, then p(A or B) = p(A) + p(B) - p(A & B)p(Jacks or Hearts) = 4/52 + 13/52 - 1/52 = 16/52 = 0.308

ADDITION RULE APPLICATIONS

p(A or B) = p(A) + p(B) - p(A & B)

but if A and B are mutually exclusive, p(A & B) = 0

p(A or B) = p(A) + p(B)

(special addition rule)

(general addition rule)

- ▶ We can use these equations to solve for difficult probabilities when we have the others
- ▶ We can determine if events are mutually exclusive by separately measuring and then comparing p(A or B), p(A), and p(B),

p(impossible event) = 0 p(certain event) = 1 For any event A, $0 \le p(A) \le 1$ $p(A) + p(\neg A) = 1$

 $p(A \& B) = p(A) \times p(B|A)$

 $p(A \& B) = p(A) \times p(B)$ when events A and B are independent

 $p(A|B) = (p(A) \times p(B|A))/p(B)$ via Bayes theorem.

ADDITION RULES

26/52 = 0.5Clubs Hearts 13 13

Special addition rule:

If A and B are mutually exclusive events, p(A or B) = p(A) + p(B)p(Clubs or Hearts) = 13/52 + 13/52 = 26/52 = 0.5p(Jacks or Twos) = 4/52 + 4/52 = 8/52 = 0.154

PROBABILITY SO FAR

p(impossible event) = 0 p(certain event) = 1 For any event A, $0 \le p(A) \le 1$ $p(A) + p(\neg A) = 1$ p(A or B) = p(A) + p(B) - p(A & B)p(A or B) = p(A) + p(B) if A and B are mutually exclusive

What about an equation for p(A & B)?

8/52 = 0.154

Drawing a Heart and a Jack - not mutually exclusive events. Clubs Hearts 13 13

p(not event)?

The complementation rule works because A and ¬A are mutually exclusive, an event cannot be both.

e.g., an M&M can't be red and not red

But, not all events are mutually exclusive.

e.g., drawing cards from a deck.

Drawing a heart and a club - mutually exclusive events. Drawing a heart and a jack - not mutually exclusive events.

Sample space = bowl of M&Ms, Event = picking red M&M e.g., 20 red, 20 yellow, 30 brown, 30 green.

p(red)=20/100=0.2, p(¬red)=80/100=0.8

Using the complementation rule:

 $p(red) + p(\neg red) = 1$ $p(\neg red) = 1 - p(red)$

 $p(\neg red) = 1 - 0.2 = 0.8$

This example was easy, but this rule allows us to get a hard probability if the complement is easy.

20

Female Male

Cat 10

Dog 30

sample space MULTIPLICATION RULES

The probability of B when A is true "probability of B given A" This is a conditional probability

e.g., for a deck of cards: A=Club, B=Heart, p(B|A)=0

A=Jack, B=Heart, p(B|A)=1/4 A=Heart, B=Jack, p(B|A)=1/13

MULTIPLICATION RULES e.g., $p(A \& B) = p(A) \times p(B|A)$ A: Jack, B: Hearts

p(Jack & Hearts) = 4/52 x 1/4 = 1/52

But for this example p(B|A)=p(B): p(B|A) = p(Hearts|Jack) = 1/4p(B) = p(Hearts) = 13/52 = 1/4

If P(B) = P(B|A), we say that events A and B are independent

MULTIPLICATION RULES

General multiplication rule

 $p(A \& B) = p(A) \times p(B|A)$

Special multiplication rule:

 $p(A \& B) = p(A) \times p(B)$ when events A and B are independent

However, events A and B are not always independent. When this happens, we use a probability tree diagram to calculate probabilities.

BAYES THEOREM APPLICATIONS

 $p(A) \times p(B|A)$

▶ We can use this equation to solve for conditional probabilities, which are often hard to do.

e.g., randomly test people for a rare disease (2% rate, event A) with a test that has 1% false positive and negative rates (positive test is event B). What is probability that a random person who tests positive has the disease, p(AIB)?

$$A|B) = \frac{p(A) \times p(B|A)}{p(B)} = \frac{(0.02) \times (0.99)}{(0.02 \times 0.99 + 0.98 \times 0.01)} = \frac{0.0198}{0.0296} = 0.6$$

BAYES THEOREM

Since p(A & B)=p(B & A)and $p(A \& B) = p(A) \times p(B|A)$ and $p(B \& A) = p(B) \times p(A|B)$

Therefore: $p(A) \times p(B|A) = p(B) \times p(A|B)$ and dividing both sides by p(B) gives us Bayes theorem:

MULTIPLICATION RULE APPLICATIONS

 $p(A \& B) = p(A) \times p(B|A)$

(general multiplication rule)

 $p(A \& B) = p(A) \times p(B)$

(special multiplication rule)

▶ We can use these equations to solve for difficult probabilities when we have the others.

but if A and B are independent, p(B|A) = p(B)

▶ We can determine if events are independent by separately measuring and then comparing p(A & B), p(A), and p(B).

PROBABILITY TREES

When events A and B are not independent.

e.g., probability of choosing an animal and it is male and a cat p(Male & Cat) = 40/100 = 0.4

 $p(Male) \times p(Cat) = (60/100) \times (50/100) = 0.6 \times 0.5 = 0.30$ p(Cat)=0.25 Female & Cat, 0.4 x 0.25 = 0.10

Stats Examples.com